推广 热搜:

2019年上海初三数学第一学期26.2.1 特殊二次函数的图像 第一课时同步训练

   日期:2025-05-17     来源:www.vs2358.com    浏览:520    
文章简介:数学初三上 第二十六章 二次函数  26.2 特殊二次函数的图像 第一课时(1)   1、选择题 1. 关于和的图像的说法:①它们都是轴对称图形;②它们的顶点相同,对称轴也相同;③它们都是抛物线;④两个函数图像关于x轴对称。这类说法正确的有...

数学初三上 第二十六章 二次函数

 26.2 特殊二次函数的图像 第一课时(1)

 

1、选择题

1. 关于的图像的说法:①它们都是轴对称图形;②它们的顶点相同,对称轴也相同;③它们都是抛物线;④两个函数图像关于x轴对称。这类说法正确的有                         

(     )

  A. 4个       B. 3个      C. 2个        D. 1个

2. 关于二次函数,下列说法正确的是                         (     )

A.若a>0,则y随x的增大而增大      B. 若a>0,则y随x的增大而减小      

C. 若a<0,则y有最大值              D. 若a>0,则y有最大值

3. 关于二次函数的图像,则下列结论不正确的是    (     )

 A. 这两个函数图像具备相同的对称轴        B. 这两个函数图像的开口方向相反

C. 这两个函数图像的开口大小相同           D. 这两个函数图像具备相同的顶点

4. 已知点(-1,y1)、(0,y2)、(1,y3)均在函数的图像上,则y1、y2、y3的大小关系是                                                       (      )

  A.y1>y2=y3      B. y2> y1 =y3   C. y1=y2=y3        D. y2< y1=y3

5. 将二次函数的二次项系数变为原来的2倍,得到新的图像的二次函数表达式是  (      )

  A.         B.           C.          D.

6. 二次函数的二次项系数缩小为原来的,得到新的图像的二次函数表达式是   (      )

  A.       B.       C.        D.

 

2、填空题

7.一般二次函数的图像是__________。

8. 抛物线的对称轴是_________________,顶点坐标是_________________,图象开口向_________________.

9. 二次函数的图像是抛物线,则m的取值范围是__________。

10. 已知是二次函数,则k需要满足的条件是__________。

11. 函数的图像是抛物线,其开口方向是__________。

12. 若抛物线开口向下,则m=__________。

13. 抛物线的对称轴是_________________,顶点坐标是_________________,图象开口向_________________.

14. 抛物线,当时,y随x的增大而__________;当时,y随x的增大而__________。

 

3、解答卷

15. 用列表法在同一个坐标系内画出的图像,并说明它们的相同点和不同的地方。

 

 

 

 

 

16. (1)请将图中图像的编号填入对应的函数后面的空格内:__________,__________,__________,__________,__________,__________。

(2)二次函数的图像的开口的大小与a有什么样的关系?请写出你的结论。

 

 

 

17、已知关于x的二次函数,当m为什么值时,图像开口向下?当m为什么值时,图像开口向上?

 

 

 

 

 

 

 

 

18. 已知直线与抛物线相交于两点,求示数m的取值范围。

 

 

 

 

 

 

 

 

 

19. 函数与直线相交于点(1,b)

(1)求a和b的值;

(2)求抛物线的分析式,并求顶点坐标和对称轴。

(3)求抛物线与直线y=2的两交点及与顶点构成的三角形的面积。

 

 

 

 

 

 

 

 

 

 

 

20. 如图甲是某段河床横截面的示意图,查阅该河段的水文资料,得到下表中的数据:

x/m

5

10

20

30

40

50

y/m

0.125

0.5

2

4.5

8

12.5

(1)请你以上表中的各对数据(x,y)作为点的坐标,尝试在图2所示的坐标系中画出y关于x的函数图象;
(2)①填写下表:

x

5

10

20

30

40

50

 

 

 

 

 

 

②依据所填表中数据呈现的规律,猜想出用x表示y的二次函数的表达式:__________;
(3)当水面宽度为36米时,一艘吃水深度(船底部到水面的距离)为1.8米的货船能否在这个河段安全通过?为何?

 

 

 

21. 已知抛物线经过点(-2,-8)

(1)求a的值.
(2)判断点B是不是在此抛物线上.
(3)求出此抛物线上纵坐标为-6的点的坐标.

 

 

 

 

数学初三上 第二十六章 二次函数

 26.2 特殊二次函数的图像 第一课时(1)

参考答案

 

1. A      2. C    3. C     4. D      5. A     6. B

7. 抛物线                         

8. y轴(直线x=0)                下

9.                         

10.

11. 向上                          

12. -3

13. y轴(直线x=0)                下    

14. 增大        减小

15.

 

相同点

不同的地方

图像形状

开口大小

顶点

对称轴

开口方向

增减性

x<0

x>0

抛物线

相同

(0,0)

x=0

向下

y随x的增大而增大

y随x的增大而减小

抛物线

相同

(0,0)

x=0

向上

y随x的增大而减小

y随x的增大而增大

16. (1)A     B     E    D    C     F

    (2)越大,开口越小;越小,开口越大

17. 当m<2时,图像开口向下,当m>2时,图像开口向上

18. ,   提示:把代人,由可得


19. (1)a=1, b=1

(2)抛物线的分析式:,顶点坐标(0,0),对称轴x=0

(3)

20. (1)图象如下图所示;(2分)


(2)①填表正确;(5分)

x

5

10

20

30

40

50

200

200

200

200

200

200

②∵由上表可知

=200,   

(6分)
(3)当水面宽度为36m时,相应的x=18,

=1.62,
此时该河段的最大水深为1.62m(8分)  

由于货船吃水深为1.8m,而1.62m<1.8m,
所以当水面宽度为36m时,该货船不可以通过这个河段.(10分)

 

23. (1)a=-2         

(2)B 不在此抛物线上

   (3)(),(

 
打赏
 
更多>热门阅读

推荐图文
今日推荐
点击排行
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报